
CENG3430 Rapid Prototyping of Digital Systems

Lecture 07:

Rapid Prototyping (I) –

Integration of ARM and FPGA

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

High-level Language vs. HDL

CENG3430 Lec07: Integration of ARM and FPGA 2

Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 3

Zynq Features

• The defining features of Zynq:

– Processing System (PS): Dual-core ARM Cortex-A9 CPU

– Programmable Logic (PL): Equivalent traditional FPGA

– Advanced eXtensible Interface (AXI): High bandwidth,

low latency connections between PS and PL.

• PS and PL can each be used for what they do best,

without the overhead of interfacing between PS and PL.

CENG3430 Lec07: Integration of ARM and FPGA 4

Rapid Design Flow with Zynq

CENG3430 Lec07: Integration of ARM and FPGA 5

REUSEABLE!!!
REUSEABLE!!!

AXI Interfacing

Key: Hardware/Software Partitioning

• PS and PL can each be used for what they do best.

CENG3430 Lec07: Integration of ARM and FPGA 6

PL fabric is good for

static parallel tasks

and peripheral

controls.

PS are more proper

for dynamic tasks

and complicated

logic controls.

Packing as

“re-useable”

IP block/core

Prototyping with FPGA: PL Only

• However, so far, our designs are implemented only

using the programmable logic of Zynq with VHDL.

– It is usually hard to implement complicated logic or software.

CENG3430 Lec07: Integration of ARM and FPGA 7

.vhd

P
L

-s
id

e

I/
O

s

PS-side

I/Os

Rapid Prototyping with Zynq: PS + PL

CENG3430 Lec07: Integration of ARM and FPGA 8

PS for Software:
general purpose

sequential tasks,

operating system, GUIs,

user applications, etc.

PL for Hardware:
intensive data

computation, PL-

side peripheral

communication, etc.

AXI:
hardware

interfacing

between PS & PL

EMIO

(PS can also directly

access PL peripherals

via EMIO)

IP Block

VHDL

Entity

(PS can access PL

peripherals via AXI)

AXI

A
X

I
In

te
rc

o
n

n
e
c
t

Advanced eXtensible Interface (AXI)

• AXI offers a means of communication between the

processor and IP blocks/cores of an FPGA design.
CENG3430 Lec07: Integration of ARM and FPGA 9

Prototyping Styles with Zynq ZedBoard

CENG3430 Lec07: Integration of ARM and FPGA 10

Hardware Base

System

Board Support

Package

Operating

System

Applications

Hardware Base

System

Board Support

Package

Bare-metal

Applications

Xilinx

Vivado

(HDL)

Xilinx

SDK

(C/C++)

hardware

Program

Logic

(PL)

SDK

(Shell, C,

Java, …)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)

FPGA (PL)

VHDL or Verilog

Programming

Style 2)

ARM + FPGA

ARM Programming

& IP Block Design

Style 3)

Embedded OS

Shell Script &
sysfs EMIO GPIO

Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 11

ARM

Programming

Integration of ARM and FPGA

• To integrate ARM and FPGA, we need to do:

 IP Block Design on Xilinx Vivado using HDL

 ARM Programming on Xilinx SDK using C/C++

CENG3430 Lec07: Integration of ARM and FPGA 12

IP Block Design

Intellectual Property (IP) Block

• IP Block (or IP Core): a hardware specification used

to configure the logic resources of an FPGA.

• IP is crucial in FPGA and embedded system designs.

– IP allows system designers to pick-and-choose from a wide

array of pre-developed, re-useable design blocks.

– IP saves development time, as well as provides guaranteed

functionality without the need for extensive testing.

• An Analogy:

CENG3430 Lec07: Integration of ARM and FPGA 13

Why reinvent

the wheel?

Hard vs. Soft IP Block

• Hard IP Block: Permit no realistic method of

modification by end users.

– Firm IP Block: An IP block already undergone full synthesis,

place and route design flow for a targeted FPGA/ASIC.

• It is one method of delivery for hard IP targeting at FPGA designs.

• Soft IP Block: Allow end users to customize the IP by

controlling the synthesis, place and route design flow.

– The highest level of soft IP block customization is available

when the source HDL code is provided.

– Soft IP block can be also provided as a gate-level netlist.

CENG3430 Lec07: Integration of ARM and FPGA 14

Sources of IP Block

• IP Libraries: Xilinx provides an extensive catalogue

of soft IP cores for the Zynq-7000 AP family.

– Ranging from building blocks (such as FIFOs and

arithmetic operators) up to fully functional processor blocks.

• Third-party IP is also available, both commercially

and from the open-source community.

• IP Creation: The final option is to create by yourself.

– The most traditional method of IP creation is for it to be

developed in HDLs (such as VHDL or Verilog).

– Recently, other methods of IP creation have also been

introduced to Vivado, such as High Level Synthesis (HLS).

CENG3430 Lec07: Integration of ARM and FPGA 15

Steps of ARM-FPGA Integration

• PART 1: IP Block Design (Software: Xilinx Vivado)

 Create and Package the PL logic blocks into intellectual

property (IP) block with AXI4 Interface.

• With AXI4, data can be exchanged via shared 32-bit registers.

 Integrate the customized (or pre-developed) IP block with

ZYNQ7 Processing System (PS) via IP Block Design.

• Vivado can auto-connect IP block and ARM core via AXI interface.

 Create HDL Wrapper and Add Constraints to

automatically generate the HDL code (VHDL or Verilog).

 Generate and Program Bitstream into the board.

• PART 2: ARM Programming (Software: Xilinx SDK)

 Design the bare-metal application in C/C++ language.

 Launch on Hardware (GDB): Run the code on ARM core.

CENG3430 Lec07: Integration of ARM and FPGA 16

Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 17

Recall Lab 05: Driving PmodSSD

• Task: Count down from the input number (XY) to (00)
CENG3430 Lec07: Integration of ARM and FPGA 18

entity sevenseg is

port(clk : in STD_LOGIC;

switch : in STD_LOGIC_VECTOR (7 downto 0);

btn : in STD_LOGIC;

ssd : out STD_LOGIC_VECTOR (6 downto 0);

sel : out STD_LOGIC);

end sevenseg; underline: external I/O pins

Hardware vs. Software Stopwatch

• In Lab 05, what we’ve done is a hardware stopwatch

in which the FPGA (PL) is responsible for both:

– Hardware: Interfacing with the user via switch and btn.

– Software: Generating the time to be shown on ssd and

dealing with different user inputs.

• In Lab 07, we will design a software stopwatch

through ARM-FPGA integration as follows:

– Hardware: FPGA (PL) is only responsible for hardware
interfacing with the user via switch, btn, and led.

– Software: ARM (PS) is responsible for generating the
values to be shown on ssd and led, and dealing with

different user inputs or events.

• By ARM programming, an even more complicated control logic can

be realized in an easier way.
CENG3430 Lec07: Integration of ARM and FPGA 19

IP

Lab07: Design Specification (1/2)

CENG3430 Lec07: Integration of ARM and FPGA 20

SSD

Controller
AXI

Interface
ARM

Processor

clk

btn

[0…4]

switch

[0…7]

led

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

(value) s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd

Register AXI Port / Signal Name Related Port on FPGA Function

0 s_slv_reg0 / slv_reg0 ssd SSD output

1 s_slv_reg1 / slv_reg1 led LED output

2 s_slv_reg2 / slv_reg2 switch Switch input

3 s_slv_reg3 / slv_reg3 btn Button input

4 s_slv_reg4 / slv_reg4 timer Timer signal input (generated by FPGA)

N/A N/A clk 100MHz clock signal from PL

N/A N/A ssdcat 7-segment digit selection

N/A N/A / timer N/A 1kHz clock divided from clk

*S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

.xdc

Lab07: Design Specification (2/2)

• We need five AXI slave registers (s_slv_reg0~4) for

exchanging data between ARM and FPGA:

– The ARM processor reads the input value from the switches

and the buttons, as well as a 1 KHz timer signal.

•s_slv_reg2: Switch input

•s_slv_reg3: Button input

•s_slv_reg4: 1 KHz clock divided from 1 MHz clk of PL.

– The C program runs on the ARM processor, calculates the

stopwatch’s time based on the data input, generates values

to be displayed on the 7-segment displays and the LEDs,

and sends the data back to the FPGA for display.

•s_slv_reg0: SSD output

•s_slv_reg1: Led output

CENG3430 Lec07: Integration of ARM and FPGA 21

Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 22

ARM

Programming

Recall: Integration of ARM and FPGA

• To integrate ARM and FPGA, we need to do:

 IP Block Design on Xilinx Vivado using HDL

 ARM Programming on Xilinx SDK using C/C++

CENG3430 Lec07: Integration of ARM and FPGA 23

IP Block Design

 IP Block Creation

• IP Block Creation in HDL

– Hardware description languages (HDLs), such as VHDL

and Verilog, are specialized programming languages.

• HDLs describe the operation and structure of digital circuits.

– The ability to create IP cores in HDL allows you the

maximum control over the functionality of your peripheral.

• IP Block Creation in Vivado High-Level Synthesis

– Vivado HLS is a tool provided by Xilinx.

– HLS is capable of converting C-based designs into RTL

design files for implementation of Xilinx All Programmable

devices (see Lecture 09).

• C-based Designs: C, C++, or SystemC

• RTL Designs: VHDL, Verilog, or SystemC

CENG3430 Lec07: Integration of ARM and FPGA 24

 IP Block Creation

• According to our design specification, we need to

have five AXI registers for exchanging data:

• Two .vhd files will be generated automatically:

– stopwatch_controller_v1_0.vhd: This file instantiates the

AXI-Lite interface and contain the stopwatch functionality.

– stopwatch_controller_v1_0_S00_AXI.vhd: This file

contains only the AXI-Lite bus functionality.

CENG3430 Lec07: Integration of ARM and FPGA 25

 AXI Interfacing

• IP blocks designed in HDL are communicated the

processing system (PS) via an AXI interface.

– Vivado will auto-create the following source files for editing:

• <peripheral>_<version>.vhd: the top-level module defines the

design interface, lists connections and ports for the AXI interface, as

well as implements the functionality of user-defined entities.

• <peripheral>_<version>_<AXI_instance>.vhd: describes an

instance of AXI interface for this IP block for integrating into PS.

CENG3430 Lec07: Integration of ARM and FPGA 26

PS
AXI

IP

Design Specification

CENG3430 Lec07: Integration of ARM and FPGA 27

SSD

Controller
AXI

Interface
ARM

Processor

clk

btn

[0…4]

switch

[0…7]

led

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

(value) s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd

Register AXI Port / Signal Name Related Port on FPGA Function

0 s_slv_reg0 / slv_reg0 ssd SSD output

1 s_slv_reg1 / slv_reg1 led LED output

2 s_slv_reg2 / slv_reg2 switch Switch input

3 s_slv_reg3 / slv_reg3 btn Button input

4 s_slv_reg4 / slv_reg4 timer Timer signal input (generated by FPGA)

N/A N/A clk 100MHz clock signal from PL

N/A N/A ssdcat 7-segment digit selection

N/A N/A / timer N/A 1kHz clock divided from clk

*S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

.xdc

stopwatch_controller_v1_0_S00_AXI.vhd (1/2)

• Vivado will auto-declare slave registers (as internal

signals) based on the number entered by users:
--

---- Signals for user logic register space example

--

---- Number of Slave Registers 5

signal slv_reg0: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg1: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg2: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg3: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg4: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

• But we still need to define ports for these registers:
-- Users to add ports here

s_slv_reg0: out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

s_slv_reg1: out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

s_slv_reg2: in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

s_slv_reg3: in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

s_slv_reg4: in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

-- User ports ends

CENG3430 Lec07: Integration of ARM and FPGA 28

stopwatch_controller_v1_0_S00_AXI.vhd (2/2)

• Then we interconnect the internal slave registers and

the user-defined ports:
-- Add user logic here

s_slv_reg0 <= slv_reg0;

s_slv_reg1 <= slv_reg1;

slv_reg2 <= s_slv_reg2;

slv_reg3 <= s_slv_reg3;

slv_reg4 <= s_slv_reg4;

-- User logic ends

• Besides, we also need to disable/delete some auto-
generated “write logic” for slv_reg2 ~ slv_reg4 (i.e.,

switch, button, and timer), since:

– Their values would be read-only from the FPGA, and

– The application (stopwatch.c) cannot change their values.

(Note: Please refer to the lab sheet for detailed instructions.)

CENG3430 Lec07: Integration of ARM and FPGA 29

 SSD output
 LED output
 Switch input

 Button input
 Timer input

IP

Design Specification

CENG3430 Lec07: Integration of ARM and FPGA 30

SSD

Controller
AXI

Interface
ARM

Processor

clk

btn

[0…4]

switch

[0…7]

led

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

(value) s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd

Register AXI Port / Signal Name Related Port on FPGA Function

0 s_slv_reg0 / slv_reg0 ssd SSD output

1 s_slv_reg1 / slv_reg1 led LED output

2 s_slv_reg2 / slv_reg2 switch Switch input

3 s_slv_reg3 / slv_reg3 btn Button input

4 s_slv_reg4 / slv_reg4 timer Timer signal input (generated by FPGA)

N/A N/A clk 100MHz clock signal from PL

N/A N/A ssdcat 7-segment digit selection

N/A N/A / timer N/A 1kHz clock divided from clk

*S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

.xdc

stopwatch_controller_v1_0.vhd (1/3)

• Next, we complete the stopwatch functionality:

1) We first define ports in entity of stopwatch_controller_v1_0:
-- Users to add ports here

clk : in std_logic;

btn : in std_logic_vector(4 downto 0);

switch : in std_logic_vector(7 downto 0);

ssdcat : out std_logic;

ssd : out std_logic_vector(6 downto 0);

led : out std_logic_vector(7 downto 0);

-- User ports ends

2) The following changes should be also made:

• Add generic parameters (if any),

• Add ports in component of stopwatch_controller_v1_0_S00_AXI,

– Since we define new ports for the five registers in *AXI.vhd

• Add other user-defined components (if any), and

• Add required internal signals for user logic and functionality.

(Note: Please refer to the lab sheet for more detailed instructions.)
CENG3430 Lec07: Integration of ARM and FPGA 31

stopwatch_controller_v1_0.vhd (2/3)

• Next, we complete the stopwatch functionality:

3) Then we create and connect stopwatch_AXI and

ssd_controller components in the architecture body of

stopwatch_controller_v1_0 as follows:

CENG3430 Lec07: Integration of ARM and FPGA 32

stopwatch_controller_v1_0_S00_AXI

...

port map (

-- Users to add port map

s_slv_reg0 => slv_reg0,

s_slv_reg1 => slv_reg1,

s_slv_reg2 => slv_reg2,

s_slv_reg3 => slv_reg3,

s_slv_reg4 => timer,

-- User port map ends

...

-- Add user logic here

ssd_controller

generic map (

cat_period => C_MS_LIMIT)

port map (

clk => clk,

value => ssd_value,

ssd => ssd,

ssdcat => ssdcat);

Note: VHDL allows the designer to

parametrize the entity during the

component instantiation via generic map.

It is used here to indicate the value for

counting 1 ms in ZedBoard.

stopwatch_controller_v1_0.vhd (3/3)

• Next, we complete the stopwatch functionality:

4) Last, we implement the stopwatch logic in the architecture

body of stopwatch_controller_v1_0 as follows:

CENG3430 Lec07: Integration of ARM and FPGA 33

ssd_value <= slv_reg0(7 downto 0);

led <= slv_reg1(7 downto 0);

slv_reg2 <= (C_S00_AXI_DATA_WIDTH-1 downto 8 => '0') & switch;

slv_reg3 <= (C_S00_AXI_DATA_WIDTH-1 downto 5 => '0') & btn;

process(clk, ms_count, timer) begin

if (clk'event and clk='1') then

if (ms_count = C_MS_LIMIT-1) then

ms_count <= (OTHERS => '0');

timer <= timer + 1;

else

ms_count <= ms_count + 1;

end if;

end if;

end process;

-- User logic ends

 ssd_controller will take over the ssd display!

 LED output

 Switch input

 Button input

 Timer input

IP

Design Specification

CENG3430 Lec07: Integration of ARM and FPGA 34

SSD

Controller
AXI

Interface
ARM

Processor

clk

btn

[0…4]

switch

[0…7]

led

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

(value) s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd

Register AXI Port / Signal Name Related Port on FPGA Function

0 s_slv_reg0 / slv_reg0 ssd SSD output

1 s_slv_reg1 / slv_reg1 led LED output

2 s_slv_reg2 / slv_reg2 switch Switch input

3 s_slv_reg3 / slv_reg3 btn Button input

4 s_slv_reg4 / slv_reg4 timer Timer signal input (generated by FPGA)

N/A N/A clk 100MHz clock signal from PL

N/A N/A ssdcat 7-segment digit selection

N/A N/A / timer N/A 1kHz clock divided from clk

*S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

.xdc

ssd_controller.vhd
-- count 1 ms (generic: cat_period)
process(clk, count)
begin
if (clk'event and clk='1') then
if (count = cat_period-1) then
count <= 0;
ms_pulse <= '1';

else
count <= count + 1;
ms_pulse <= '0';

end if;
end if;
end process;
-- negate sel every 1 ms
process(clk, sel, ms_pulse)
begin
if (clk'event and clk='1') then
if (ms_pulse = '1') then
sel <= not sel;

else
sel <= sel;

end if;
end if;

end process;
-- output ssdcat
ssdcat <= sel;

CENG3430 Lec07: Integration of ARM and FPGA 35

-- assign digit based on sel
digit <= value(7 downto 4) when sel='1'

else value(3 downto 0);
-- display digit on ssd
process(clk, digit) begin
if (clk'event and clk='1') then
case digit is
when x"0" => ssd <= b"1111110";
when x"1" => ssd <= b"0110000";
when x"2" => ssd <= b"1101101";
when x"3" => ssd <= b"1111001";
when x"4" => ssd <= b"0110011";
when x"5" => ssd <= b"1011011";
when x"6" => ssd <= b"1011111";
when x"7" => ssd <= b"1110000";
when x"8" => ssd <= b"1111111";
when x"9" => ssd <= b"1110011";
when x"a" => ssd <= b"1110111";
when x"b" => ssd <= b"0011111";
when x"c" => ssd <= b"1001110";
when x"d" => ssd <= b"0111101";
when x"e" => ssd <= b"1001111";
when x"f" => ssd <= b"1000111";
when others => ssd <= b"0000000";

end case;
end if;

end process;

↑ SSD output
 ssdcat output

 IP Packager and IP Catalog

• Vivado IP Packager

enables developers

to quickly prepare IP

for integration in the

Vivado IP Catalog.

• Once the IP is

selected in a Vivado

project, the IP is

treated like any

other IP module

from the IP Catalog.

CENG3430 Lec07: Integration of ARM and FPGA 36

• Vivado IP Integrator provides a graphical “canvas” to

configure IP blocks in an automated development flow.

 IP Integration

CENG3430 Lec07: Integration of ARM and FPGA 37

Block Design for Stopwatch System

• Vidado will help us to auto-connect the stopwatch

and the ARM processor through AXI interface.

CENG3430 Lec07: Integration of ARM and FPGA 38

↑ external ports

external

ports

↓

 HDL Wrapper &  Generate Bitstream

• Vivado can help to

create a top-level

HDL Wrapper.

– This will automatically

generate the VHDL

code for the whole

block design.

• With a constraint file,

the Bitstream can be

generated and

downloaded into the

targeted board.

CENG3430 Lec07: Integration of ARM and FPGA 39

HDL Wrapper

.vhd

wrapper

Program

Bitstream

Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 40

IP

Design Specification

CENG3430 Lec07: Integration of ARM and FPGA 41

SSD

Controller
AXI

Interface
ARM

Processor

clk

btn

[0…4]

switch

[0…7]

led

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

(value) s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd

Register AXI Port / Signal Name Related Port on FPGA Function

0 s_slv_reg0 / slv_reg0 ssd SSD output

1 s_slv_reg1 / slv_reg1 led LED output

2 s_slv_reg2 / slv_reg2 switch Switch input

3 s_slv_reg3 / slv_reg3 btn Button input

4 s_slv_reg4 / slv_reg4 timer Timer signal input (generated by FPGA)

N/A N/A clk 100MHz clock signal from PL

N/A N/A ssdcat 7-segment digit selection

N/A N/A / timer N/A 1kHz clock divided from clk

*S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

.xdc

 ARM Programming

• We need some header files: one for controlling the

ZYNQ processor in general, and the other to bring in

items specific to our stopwatch controller:
– #include "xparameters.h"

– #include "stopwatch_controller.h"

• Then, we can make some simple names for the

addresses of the registers in our IP block.
– #define SW_BASE XPAR_STOPWATCH_CONTROLLER_0_S00_AXI_BASEADDR

– #define SSD_ADDR STOPWATCH_CONTROLLER_S00_AXI_SLV_REG0_OFFSET

– ...

• We are creating a bare metal software program.

– There is nothing but our program running on the ARM.

– Thus, our program should really never exit (How? By loop!).

CENG3430 Lec07: Integration of ARM and FPGA 42

Key: Interfacing via Registers (1/3)
stopwatch.c

while(1)

{

/*** INPUT ***/

/* btn & switch & time */

btn_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, BTN_ADDR);

...

/* time */

timer_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

u32 time_display;

… ...

/*** OUTPUT ***/

/* led & ssd */

led_out = time_display;

STOPWATCH_CONTROLLER_mWriteReg(SW_BASE, LED_ADDR, led_out);

...

/*** FEEDBACK ***/

btn_in_prev = btn_in;

switch_in_prev = switch_in;

}
CENG3430 Lec07: Integration of ARM and FPGA 43

SWITCH_ADDR

SSD_ADDR

 Infinite loop

↑ read register

↑ write register

 Like the states for FSMs

 User logic for determining the time to be displayed on LED and SSD

Key: Interfacing via Registers (2/3)

CENG3430 Lec07: Integration of ARM and FPGA 44

/* btn */

btn_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, BTN_ADDR);

u32 btn_rise = ~btn_in_prev & btn_in;

if (btn_rise & BTN_C) stopped=(stopped==1?0:1);

/* switch */

switch_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, SWITCH_ADDR);

if (switch_in != switch_in_prev) stopped = 1;

// Whether btn_c is pressed?

// Whether switch(s) are changed?
// Get new SW

// Get new BTN

CDRUL

btn_in_prev 00000



~btn_in_prev 11111

&) btn_in 10000

btn_rise 10000

#define BTN_C 16

#define BTN_D 8

#define BTN_R 4

#define BTN_U 2

#define BTN_L 1

CDRUL

btn_in_prev 10000



~btn_in_prev 01111

&) btn_in 10000

btn_rise 00000

switch_in_prev 0000 0000

compare) switch_in 0010 0000

TRUE (otherwise: FALSE)

rising not rising

Key: Interfacing via Registers (3/3)

CENG3430 Lec07: Integration of ARM and FPGA 45

/* time */

timer_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

u32 time_display;

if(stopped)

{

time_display = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, SWITCH_ADDR);

timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}else

{

u32 time_elapsed = (timer_in - timer_zero) / 1000; // seconds

time_display = switch_in - time_elapsed;

if(time_display + 1 == 0)

{

timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}

}

// Reset time_display by switch values & Reset timer_zero by current time

// Calculate time_elapsed (in seconds) and time_display

// The “remaining” time for displaying

// Reset timer_zero by current time to re-start counting
// Convert to “remaining” time

// Get the

“current” time

zero current

elasped remaining

zero
+

switch

reset

1ast 1
second

new
zero

reset

 Launch on Hardware (GDB)

• Finally, after the software stopwatch (.c) is ready, you

can run it on ARM by Launch on Hardware (GDB).

– GDB: GNU Debugger is the most popular debugger for

UNIX systems to debug C and C++ programs.

• Vivado will help to automatically compile, link, and

load your program.

CENG3430 Lec07: Integration of ARM and FPGA 46

Design Flow of ARM-FPGA Integration

CENG3430 Lec07: Integration of ARM and FPGA 47

Open VIVADO

Create New Project

Create & Package New IP

Create New Block Design

Add PS7 and other New IPs

Configure IPs

Run Connection Automation

Run Block Automation

Validate Design

Create HDL Wrapper

Generate Bitstream

Export Hardware to SDK

Add IP Repository into SDK

Create Board Support Package

Create New ‘C’ Application

Write ‘C’ Code

Build the Application (auto)

Configure FPGA

Run on Hardware (GDB)

Summary

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– Case Study: Software Stopwatch

• IP Block Design (Xilinx Vavido)

 IP Block Creation & AXI Interfacing

 IP Integration

 HDL Wrapper

 Generate Bitstream

• ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

CENG3430 Lec07: Integration of ARM and FPGA 48

